On the matching properties of three fence graphs

Haruo Hosoya
Department of Chemistry, Ochanomizu University, Bunkyo-ku, Tokyo 112, Japan
and
Frank Harary
Department of Computer Science, New Mexico State University, Las Cruces, NM 88003-0001, USA

Supplementing the construction of a Möbius ladder graph derived from a ladder graph, the linear fence graph and cyclic fence graph are introduced. These have neater mathematical expressions for the perfect matching numbers and the matching and characteristic polynomials than the graphs in the previous families.

1. Introduction

It is well known [1] that ladder graphs are defined as $\mathrm{P}_{2} \times \mathrm{P}_{n}$ and prisms (cyclic ladder graphs) as $\mathrm{P}_{2} \times \mathrm{C}_{n}$. Following the notation of ref. [1], P_{n} is the path and C_{n} the cycle of order n nodes. One defines a Möbius ladder graph as in fig. 1

3

1
Möbius

5

8

$$
H_{n}=P_{2} \times C_{n}
$$

9

11

7

13

Fig. 1. Conventional definitions of ladder, prism, and Möbius ladder graphs. Below each graph is its Kekulé number.
just by a physical twist of a cyclic ladder graph. Accordingly, several interesting mathematical features including the crossing number have been discussed [2]. That
this structure is a natural phenomenon can be supported by the existence of chemical compounds corresponding to the Möbius ladder graphs [3,4]. For another chemical reason, the prism or cyclic ladder graph has been called the Hückel ladder graph [5].

From a graph-theoretic point of view, the Kekulé number (or the number of perfect matchings or 1 -factors) for these families of graphs presents an interesting question. One of us (HH) has enumerated the Kekulé numbers for many series of graphs by proposing the topological index, and found their interesting mathematical properties [5-11]. Based on these results, it was found that the two series of Hückel ladder and Möbius ladder graphs are entangled with each other [5]. Our present purpose is to introduce the fence graph, cyclic fence graph, and Möbius-cyclic fence graph to disentangle the vexing properties of the previous families of graphs.

2. Perfect matching numbers

All the graphs treated here have at least one 1 -factor or perfect matching. Hence, they have been called Kekuléan [12]. In fig. 1, the Kekuléan numbers of the displayed graphs are given. As is well known, the perfect matching numbers for the ladder (or fence) graphs form the Fibonacci numbers [9],

$$
\begin{align*}
& F_{n}=F_{n-1}+F_{n-2}, \quad(n \geq 2) \tag{1}\\
& F_{1}=1 \text { and } F_{2}=2
\end{align*}
$$

It is very well known that F_{n} can be expressed explicity as

$$
\begin{equation*}
F_{n}=\left(A^{n+1}-B^{n+1}\right) / \sqrt{5} \tag{2}
\end{equation*}
$$

with $A=(1+\sqrt{5}) / 2$ and $B=(1-\sqrt{5}) / 2$. Denoting the shift-up operator of F_{n} by $\hat{\boldsymbol{A}}$ [8], we have

$$
\begin{equation*}
\hat{A} F_{n}=F_{n+1} \tag{3}
\end{equation*}
$$

Equation (1) can be expressed by an operator polynomial as

$$
\begin{equation*}
\hat{A}^{2}-\hat{A}-1=0 \tag{4}
\end{equation*}
$$

whose zeros are A and B.
On the other hand, the 1 -factors (or perfect matching numbers or Kekule numbers) $f_{1}\left(\mathrm{H}_{n}\right)$ and $f_{1}\left(\mathrm{M}_{n}\right)$, respectively, of the Hückel ladder H_{n} and Möbius ladder M_{n} graphs can be expressed by

$$
\begin{equation*}
f_{1}\left(\mathrm{H}_{n}\right)=A^{n}+B^{n}+1+(-1)^{n} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1}\left(\mathrm{M}_{n}\right)=A^{n}+B^{n}+1-(-1)^{n} \tag{6}
\end{equation*}
$$

which are derived by using the zeros of the common operator polynomials for the two series of graphs:

$$
\begin{equation*}
\hat{A}^{4}-\hat{A}^{3}-2 \hat{A}^{2}+\hat{A}+1=\left(\hat{A}^{2}-1\right)\left(\hat{A}^{2}-\hat{A}-1\right)=0 . \tag{7}
\end{equation*}
$$

The expressions of eqs. (5)-(7) are rather awkward. This might be due to the fact that the graphs in each of the two series H_{n} and M_{n} are alternately bipartite and nonbipartite.

For this reason, we now rearrange the two families of graphs alternately to obtain two new series of graphs E_{n} and L_{n}, as shown in fig. 2. Now the new families E_{n} and L_{n} are, respectively, bipartite and nonbipartite. A graph with a loop such as

Fig. 2. Alternate interchange of H_{n} and M_{n} ladder graphs gives the nonbipartite L_{n} and bipartite E_{n} families.
L_{1} is considered nonbipartite, since a loop is interpreted as an edge joining two nodes belonging to the same class (starred or unstarred). It is straightforward that the Kekule numbers of $\mathrm{L}_{n}, f_{1}\left(\mathrm{~L}_{n}\right)$, form the Lucas numbers

$$
\begin{align*}
& f_{1}\left(\mathrm{~L}_{n}\right)=f_{1}\left(\mathrm{~L}_{n-1}\right)+f_{1}\left(\mathrm{~L}_{n-2}\right), \tag{8}\\
& f_{1}\left(\mathrm{~L}_{1}\right)=1 \text { and } f_{1}\left(\mathrm{~L}_{2}\right)=3
\end{align*}
$$

and that

$$
\begin{equation*}
f_{1}\left(\mathrm{E}_{n}\right)=f_{1}\left(\mathrm{~L}_{n}\right)+2(\text { for all positive integers } n) . \tag{9}
\end{equation*}
$$

3. Definitions of fence graphs

Now the three series of graphs in figs. 1 and 2 can be redrawn as shown in figs. 3(a)-(c). The linear ladder graph F_{n} may be called the linear fence graph, while E_{n} and L_{n} may be called the cyclic fence graph and the Möbius-cyclic fence graph, respectively. It is clear that the definitions of these two graphs, the linear
(Linear)Fence

Fn

(a)

Möbius-cyclic fence

Cyclic fence
(c)

Bowl
(d)

Fig. 3. Three families of fence graphs $\mathrm{F}_{n}, \mathrm{~L}_{n}$, and E_{n}. The cyclic fence graph E_{n} is also the bowl graph B_{n}.
fence F_{n} and the cyclic fence graphs E_{n}, are natural, both being bipartite and with a simple perfect matching number expression. Note that the perfect matching numbers of F_{n} are Fibonacci numbers as expressed by eq. (1) or (2). Further, the cyclic fence graph can be drawn as in fig. 3(d) and may be called bowl graphs, B_{n}, because of their appearance. Incidentally, $\mathrm{B}_{4}=\mathrm{E}_{4}=\mathrm{Q}_{3}$ (cube graph). We already know that $B_{3}=E_{3}=K_{3,3}$ and $L_{2}=K_{4}$.

4. Matching polynomials of fence graphs

The matching polynomials $\alpha_{G}(x)$ of the fence graphs are fully discussed elsewhere [9]. Table 1 gives the matching polynomials of the smaller members of

Table 1
The matching polynomials of cyclic and Möbius-cyclic fence graphs

n	$E_{n}(x)$ $L_{n}(x)$
1	$x^{2}-\left\{\begin{array}{l}3 \\ 1\end{array}\right.$
2	$x^{4}-6 x^{2}+\left\{\begin{array}{l}Z_{G} \\ 5 \\ 3\end{array}\right.$
3	$x^{6}-9 x^{4}+18 x^{2}-\left\{\begin{array}{l}6 \\ 4\end{array}\right.$
4	$x^{8}-12 x^{6}+42 x^{4}-44 x^{2}+\left\{\begin{array}{l}9 \\ 7\end{array}\right.$
5	$x^{10}-15 x^{8}+75 x^{6}-145 x^{4}+95 x^{2}-\left\{\begin{array}{l}13 \\ 11\end{array}\right.$

cyclic fence and Möbius-cyclic fence graphs. By using the operator technique [8,9], the following recursion formula is obtained for the matching polynomials of both E_{n} and $\mathrm{L}_{n}[5]$:

$$
\begin{equation*}
\hat{\boldsymbol{O}}^{4}-\left(x^{2}-3\right) \hat{O}^{3}+2 \hat{\boldsymbol{O}}^{2}+\left(x^{2}-1\right) \hat{O}-1=0 \tag{10}
\end{equation*}
$$

where the operator $\hat{\boldsymbol{O}}$ is defined to shift-up the matching polynomial $\alpha_{n}(x)$ of the nth member to that of the next member:

$$
\begin{equation*}
\hat{\boldsymbol{O}} \alpha_{n}(x)=\alpha_{n+1}(x) . \tag{11}
\end{equation*}
$$

The operator polynomial for the matching polynomial of the graphs F_{n} has already been obtained in ref. [9]:

$$
\begin{equation*}
\hat{O}^{3}-\left(x^{2}-2\right) \hat{O}^{2}+x^{2} \hat{O}-1=0 \tag{12}
\end{equation*}
$$

Note that eq. (10) may be factored as the product of $(\hat{O}+1)$ with the polynomial in eq. (12). Since the topological index $Z_{G}[6,7]$ of a graph G which is composed of N points and whose matching polynomial is expressed as $\alpha_{G}(x)$ is defined as

$$
\begin{equation*}
Z_{G}=\mathrm{i}^{N} \alpha_{G}(\mathrm{i}) \quad\left(\mathrm{i}^{2}=-1\right), \tag{13}
\end{equation*}
$$

the operator polynomial for the topological index of the series of graphs F_{n} is given by

$$
\begin{equation*}
\hat{A}^{3}-3 \hat{A}^{2}-\hat{\boldsymbol{A}}+1=0 \tag{14}
\end{equation*}
$$

and that for both series E_{n} and L_{n} is

$$
\begin{equation*}
\hat{A}^{4}-4 \hat{A}^{3}+2 \hat{A}^{2}+2 \hat{A}-1=(\hat{A}-1)\left(\hat{A}^{3}-3 \hat{A}^{2}-\hat{A}+1\right)=0 . \tag{15}
\end{equation*}
$$

Note that eqs. (14) and (15) are, respectively, derived by putting $\hat{O} \rightarrow-\hat{A}$ and $x \rightarrow \mathrm{i}$ into eqs. (12) and (10).

5. Characteristic polynomials of cyclic fence graphs

Among the three series of graphs $\mathrm{F}_{n}, \mathrm{~L}_{n}$, and E_{n}, only the cyclic fence graph E_{n} has cyclic symmetry. Thus, its characteristic polynomial can be factored systematically [5] by a standard technique in solid state physics [13,14] as

$$
\begin{equation*}
E_{n}(x)=\prod_{k=1}^{n} f_{k}, \tag{16}
\end{equation*}
$$

where

$$
f_{k}=x^{2}-[1+2 \cos (2 k \pi / n)]^{2} .
$$

The highly factored characteristic polynomials of the smaller members of the cyclic fence graphs are given in table 2. This property also supports the proposed definition of the cyclic fence graphs.

Table 2

Characteristic polynomials of the smaller members of the cyclic fence graph.

n	$E_{n}(x)$
1	$\left(x^{2}-9\right)$
2	$\left(x^{2}-1\right)\left(x^{2}-9\right)$
3	$x^{4}\left(x^{2}-9\right)$
4	$\left(x^{2}-1\right)^{3}\left(x^{2}-9\right)$
5	$\left(x^{2}-9\right)\left(x^{4}-3 x^{2}+1\right)^{2}$
6	$x^{4}\left(x^{2}-1\right)\left(x^{2}-4\right)^{2}\left(x^{2}-9\right)$

From the structure of eq. (16), one can conclude that the characteristic polynomials $E_{n}(x)$ of the cyclic fence graphs $\mathrm{E}_{n}(n=1,2,3,4$, and 6$)$ are all integers and no other member of this family has this property.

Factorizability of the characteristic polynomial of a given graph is important in the discussion of the electronic properties of the corresponding conjugated molecule. Although no real molecule exists corresponding to the three series of fence graphs in fig. 3, the F_{n} and E_{n} families are known to be important in the discussion of the infinitely large conjugated hydrocarbon polymer networks [14,15].

6. Iso-Kekuléan graph

It is obvious that replacing any edge P_{2} by the longer path P_{4} does not change the perfect matching number (see fig. 4). By definition, two graphs are iso-Kekuléan if they have the same Kekule number. By using this strategy, one can construct from

Fig. 4. Substitution of an edge does not affect the number of perfect matchings.
$I F_{n}$
(a)

1

2

3

5

8
$1 L_{n}$
(b)

1

3

4

7

11
(c)
$I E_{n}$

5

6

9

13

Fig. 5. Three families of graphs iso-Kekuléan to the graphs in fig. 3.
a given graph as many iso-Kekuléan graphs as one wishes. Figures 5 (a)-(c) give examples of the three series of graphs $\mathrm{IF}_{n}, \mathrm{IL}_{n}$, and IE_{n}, respectively, iso-Kekuléan with the three different fence graphs $\mathrm{F}_{n}, \mathrm{~L}_{n}$, and E_{n} in fig. 3. The IF_{n} series, called zigzag polyacenes [8], form one of the typical families of polyhex graphs, and have been shown to have Kekule numbers in the Fibonacci sequences. No real hydrocarbon
molecule exists corresponding to the cyclic benzenoid graphs IL_{n} and IE_{n}. However, the hypothetical molecular graphs IE_{n} have been shown to be important when one considers the density of states of infinitely large zigzag polyacene networks IF_{n} [14]. Note that although any member of the linear IF_{n} has no $4 n$-membered cycle, the cyclic counterpart IE_{n} has at least two $4 n$-membered cycles. Since the IL_{n} series has at least two odd cycles, they are not polyhex graphs nor do they have any important role in theoretical chemistry.

References

[1] F. Harary, Graph Theory (Addison-Wesley, Reading, 1969).
[2] R.K. Guy and F. Harary, Can. Math. Bull. 10(1967)493.
[3] D.M. Walba, R.M. Richards and R.C. Haltiwanger, J. Am. Chem. Soc. 104(1982)3219.
[4] D.M. Walba, J. Simon and F. Harary, Tetrahedron Lett. 29(1988)731.
[5] H. Hosoya, J. Math. Chem. 7(1991)289.
[6] H. Hosoya, Bull. Chem. Soc. Japan 44(1971)2332.
[7] H. Hosoya, Fibonacci Quart. 11(1973)255.
[8] H. Hosoya and N. Ohkami, J. Comput. Chem. 4(1983)585.
[9] H. Hosoya and A. Motoyama, J. Math. Phys. 26(1985)157.
[10] H. Hosoya, Comput. Math. Appl. 12B(1986)271.
[11] H. Hosoya, Discr. Appl. Math. 19(1988)239.
[12] S.J. Cyvin and I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons, Lecture Notes in Chemistry, No. 46 (Springer, Berlin, 1988).
[13] E. Heilbronner, Helv. Chim. Acta 36(1953)170.
[14] H. Hosoya, M. Aida, R. Kumagai and K. Watanabe, J. Comput. Chem. 8(1987)358.
[15] H. Hosoya, H. Kumagai, K. Chida, M. Ohuchi and Y.-D. Gao, Pure Appl. Chem. 62(1990)445.

