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Supplementing the construction of a M6bius ladder graph derived from a ladder 
graph, the linear fence graph and cyclic fence graph are introduced. These have neater 
mathematical expressions for the perfect matching numbers and the matching and 
characteristic polynomials than the graphs in the previous families. 

1. In t roduc t ion  

It is well known [1] that ladder graphs are defined as P2 x Pn and prisms 
(cyclic ladder graphs) as P2 x C,. Following the notation of  ref. [1], P ,  is the path 
and C,, the cycle of  order n nodes. One defines a MSbius ladder graph as in fig. 1 
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Fig. 1. Conventional definitions of ladder, prism, and M6bius 
ladder graphs. Below each graph is its Kekul6 number. 

just by a physical twist of  a cyclic ladder graph. Accordingly, several interesting 
mathematical features including the crossing number have been discussed [2]. That 
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this structure is a natural phenomenon can be supported by the existence of chemical 
compounds corresponding to the MObius ladder graphs [3,4]. For another chemical 
reason, the prism or cyclic ladder graph has been called the Hfickel ladder graph [5]. 

From a graph-theoretic point of view, the Kekul~ number (or the number of 
perfect matchings or 1-factors) for these families of graphs presents an interesting 
question. One of us (HH) has enumerated the Kekul6 numbers for many series of 
graphs by proposing the topological index, and found their interesting mathematical 
properties [5-11 ]. Based on these results, it was found that the two series of H~ickel 
ladder and MObius ladder graphs are entangled with each other [5]. Our present 
purpose is to introduce the fence graph, cyclic fence graph, and M0bius-cyclic fence 
graph to disentangle the vexing properties of the previous families of graphs. 

2. Perfect matching n u m b e r s  

All the graphs treated here have at least one 1-factor or perfect matching. 
Hence, they have been called Kekuldan [12]. In fig. 1, the Kekuldan numbers of the 
displayed graphs are given. As is well known, the perfect matching numbers for the 
ladder (or fence) graphs form the Fibonacci numbers [9], 

F n = F n _ I + F n _ 2 ,  ( n > 2 )  

F : = I  and F2= 2. 

It is very well known that Fn can be expressed explicity as 

F n = (A n+: _ B n + l ) ] . , ~ ,  

(1) 

(2) 

with A = (1 + -4~)/2 and B = (1 - -,~)/2. Denoting the shift-up operator ofF,, by /] [8], 
we have 

AFn = Fn+:. (3) 

Equation (1) can be expressed by an operator polynomial as 

,3, 2 - A - 1 = 0, (4) 

whose zeros are A and B. 
On the other hand, the 1-factors (or perfect matching numbers or Kekuld 

numbers) fl(Hn) and fl(Mn), respectively, of the Hfickel ladder Hn and MObius 
ladder Mn graphs can be expressed by 

and 

3~(Hn)  = A n + B n + 1 + ( - 1 )  n 

fl(Mn) = A n + B n + 1 - ( - 1 )  n, 

(5) 

(6) 
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which are derived by using the zeros of  the common  operator polynomials  for the 
two series of  graphs: 

A 4 _ A 3 _ 2,3. 2 + ,3. + 1 = (,~2 _ 1) (/~2 - - /~  -- 1) = 0. (7) 

The expressions of  eqs. (5) - (7)  are rather awkward. This might  be due to the fact 
that the graphs in each of  the two series H.  and M.  are alternately bipartite and 
nonbipartite. 

For this reason, we now rearrange the two families of  graphs alternately to 
obtain two new series of  graphs E,, and L. ,  as shown in fig. 2. Now the new families 
E.  and Ln are, respectively, bipartite and nonbipartite. A graph with a loop such as 

Ln n o n - b i p a r t i t e  

1 3 4 7 11 

E n b i p a r t i t e  

3 5 6 9 13 

Fig. 2. Alternate interchange of H n and M. ladder 
graphs gives the nonbipartite L. and bipartite E n families. 

L1 is considered nonbipartite, since a loop is interpreted as an edge joining two 
nodes belonging to the same class (starred or unstarred). It is straightforward that 
the Kekul6 numbers  of  Ln, f l (L . ) ,  form the Lucas numbers  

4 (L. )  = 4(L._1) + 4(L.-E), (8) 

f](L1) = 1 and f](Lz) = 3 

and that 

f1(E.) = f l (L . )  + 2 (for all positive integers n). (9) 
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3. Definitions of fence graphs 

Now the three series of graphs in figs. 1 and 2 can be redrawn as shown in 
figs. 3(a)-(c). The linear ladder graph F,, may be called the linear fence graph, 
while En and Ln may be called the cyclic fence graph and the M6bius-cyclicfence 
graph, respectively. It is clear that the definitions of these two graphs, the linear 

(L inear)Fence Fn 

(a) N ~ / ~  ~ ~'~'~'~')'~ 

(b) 

(c) 

M6bius-cyc l ic  fence Ln 

En Cyclic f e n c e  

(d) 

B o w l  Bn 

Fig. 3. Three families of fence graphs F., L., and E.. 
The cyclic fence graph E. is also the bowl graph B.. 

fence F,, and the cyclic fence graphs En, are natural, both being bipartite and with 
a simple perfect matching number expression. Note that the perfect matching numbers 
of Fn are Fibonacci numbers as expressed by eq. (1) or (2). Further, the cyclic fence 
graph can be drawn as in fig. 3(d) and may be called bowl graphs, B,, because of 
their appearance. Incidentally, B4 = E4 = Q3 (cube graph). We already know that 
B 3 = E 3 = K3, 3 and L2 = K4. 

4. Matching polynomials of fence graphs 

The matching polynomials ctc(x) of the fence graphs are fully discussed 
elsewhere [9]. Table 1 gives the matching polynomials of the smaller members of 
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Table I 

The matching polynomials of cyclic and MObius-cyclic fence graphs 

n E.(x) Zo 
L.(x) 

1 x2 - [ 3  4 
L1 2 

{53 12 2 x4 - 6x2 + 10 

6 34 
3 x 6 - 9 x 4  +18x2 - 4 32 

9 108 
4 x S - 1 2 x 6 + 4 2 x 4 - 4 4 x 2 +  7 106 

13 344 
5 x l O - 1 5 x S + 7 5 x 6 - 1 4 5 x 4 + 9 5 x 2 -  11 342 

cyclic fence and MObius-cyclic fence graphs. By using the operator technique [8,9], 
the following recursion formula is obtained for the matching polynomials of both 
E,t and Ln [5]: 

6 4  -- (X 2 -- 3 )03  + 2 6 2  + (X 2 -- 1)0 - 1 = O, (10) 

where the operator 6 is defined to shift-up the matching polynomial an(x) of the 
nth member to that of the next member: 

Oan(x) = an+l(x). (11) 

The operator polynomial for the matching polynomial of the graphs F,, has 
already been obtained in ref. [9]: 

63 - (x 2 - 2)62 + x20 - 1 = O. (12) 

Note that eq. (10) may be factored as the product of (O + 1) with the polynomial 
in eq. (12). Since the topological index Zc [6,7] of a graph G which is composed 
of N points and whose matching polynomial is expressed as t~(x) is defined as 

Z a = iNaa(i) (i 2 =--1), (13) 

the operator polynomial for the topological index of the series of graphs Fn is given 
by 

.3, 3 - 3,3, 2 - A + 1 = 0 (14) 
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and that for both series En and L,, is 

A 4 - 4A 3 + 2A 2 + 2A - 1 = (A - 1) (A 3 - 3.3, 2 - ,3, + 1) = 0. (15) 

Note that eqs. (14) and (15) are, respectively, derived by putting ( ) - - - ) -A  and 
x---)i into eqs. (12) and (10). 

5. Characterist ic polynomials of cyclic fence graphs 

Among the three series of  graphs F,,, Ln, and E~, only the cyclic fence graph 
En has cyclic symmetry.  Thus, its characteristic polynomial can be factored 
systematically [5] by a standard technique in solid state physics [13,14] as 

where 

11 

E,,(x) = I-I  fk ,  (16) 
k = l  

fk = x2 - [1 + 2 cos(2krc/n)] 2. 

The highly factored characteristic polynomials of  the smaller members of the cyclic 
fence graphs are given in table 2. This property also supports the proposed definition 
of the cyclic fence graphs. 

Table 2 

Characteristic polynomials of the smaller 
members of the cyclic fence graph. 

n En(x ) 

l ( x  a - 9 )  

2 (x 2 - 1)(x 2 - 9) 

3 x4(x z - 9) 
4 (x 2 - 1)3(x 2 - 9) 

5 (x 2 - 9)(x 4 - 3X 2 + 1 )  2 

6 xa(x 2 - 1 ) ( X  2 - 4 ) 2 ( X  2 - 9) 

From the structure of eq. (16), one can conclude that the characteristic 
polynomials En(x) of  the cyclic fence graphs En (n = 1, 2, 3, 4, and 6) are all integers 
and no other member  of  this family has this property. 

Factorizability of  the characteristic polynomial of  a given graph is important 
in the discussion of the electronic properties of the corresponding conjugated molecule. 
Although no real molecule exists corresponding to the three series of  fence graphs 
in fig. 3, the Fn and E~ families are known to be important in the discussion of  the 
infinitely large conjugated hydrocarbon polymer networks [14, 15]. 
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6. Iso-Kekul~an graph 

It is obvious that replacing any edge 1:'2 by the longer path 1'4 does not change 
the perfect matching number (see fig. 4). By definition, two graphs are iso-Kekuldan 
if they have the same Kekul6 number. By using this strategy, one can construct from 

I F n  

(a) / 

1 

I L n  

(b) C~ D 

1 

I E n  

(c) ~ )  

3 

Fig. 4. Substitution of an edge does not 
affect the number of perfect matchings. 

2 3 5 8 
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5 6 9 13 

Fig. 5. Three families of graphs iso-Kekul6an to the graphs in fig. 3. 

a given graph as many iso-Kekul6an graphs as one wishes. Figures 5(a)-(c) give 
examples of the three series of graphs IF., IL,,, and IE., respectively, iso-Kekul6an 
with the three different fence graphs F,,, L,,, and E. in fig. 3. The IF. series, called 
zigzag polyacenes [8], form one of the typical families of polyhex graphs, and have 
been shown to have Kekul6 numbers in the Fibonacci sequences. No real hydrocarbon 



218 H. Hosoya, F. Harary, Matching properties of three fence graphs 

molecule exists corresponding to the cyclic benzenoid graphs ILn and IE',. However, 
the hypothetical molecular graphs IEn have been shown to be important when one 
considers the density of states of infinitely large zigzag polyacene networks IF,, 
[14]. Note that although any member of the linear IF', has no 4n-membered cycle, 
the cyclic counterpart IE', has at least two 4n-membered cycles. Since the ILn series 
has at least two odd cycles, they are not polyhex graphs nor do they have any 
important role in theoretical chemistry. 
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